Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils.
نویسندگان
چکیده
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or a copolymer of 90% 3-hydroxybutyric acid and 10% 3-hydroxyvaleric acid was studied in soils incubated at a constant temperature of 15, 28, or 40 degrees C for up to 200 days. In addition, hydrolytic degradation in sterile buffer at temperatures ranging from 4 to 55 degrees C was monitored for 98 days. Degradation was measured through loss of weight (surface erosion), molecular weight, and mechanical strength. While no weight loss was recorded in sterile buffer, samples incubated in soils were degraded at an erosion rate of 0.03 to 0.64% weight loss per day, depending on the polymer, the soil, and the incubation temperature. The erosion rate was enhanced by incubation at higher temperatures, and in most cases the copolymer lost weight at a higher rate than the homopolymer. The molecular weights of samples incubated at 40 degrees C in soils and those incubated at 40 degrees C in sterile buffer decreased at similar rates, while the molecular weights of samples incubated at lower temperatures remained almost unaffected, indicating that molecular weight decrease is due to simple hydrolysis and not to the action of biodegrading microorganisms. The degradation resulted in loss of mechanical properties. From the samples used in the biodegradation studies, 295 dominant microbial strains capable of degrading P (3HB) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer in vitro were isolated and identified.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild type Comamonas sp. EB172. Abstract Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 8...
متن کاملCyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus.
The cyclic process of biosynthesis and degradation of poly(3-hydroxyalkanoate) (PHA) was studied in Alcaligenes eutrophus under conditions of nitrogen-limitation of growth. A. eutrophus cells, which had accumulated poly(3-hydroxybutyrate) (PHB) of 55 wt% content within cells from butyric acid, were transferred into a nitrogen-free medium containing pentanoic acid as the sole carbon source and c...
متن کاملFormation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha.
The acetoacetyl-CoA reductase and the polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (formerly Alcaligenes eutrophus) were expressed in Escherichia coli, Klebsiella aerogenes, and PHA-negative mutants of R. eutropha and Pseudomonas putida. While expression in E. coli strains resulted in the accumulation of poly(3-hydroxybutyrate) [PHB], strains of R. eutropha, P. putida and K. aero...
متن کامل3-Hydroxybutyrate oligomer hydrolase and 3-hydroxybutyrate dehydrogenase participate in intracellular polyhydroxybutyrate and polyhydroxyvalerate degradation in Paracoccus denitrificans.
Genes encoding 3-hydroxybutyrate oligomer hydrolase (PhaZc) and 3-hydroxybutyrate dehydrogenase (Hbd) were isolated from Paracoccus denitrificans. PhaZc and Hbd were overproduced as His-tagged proteins in Escherichia coli and purified by affinity and gel filtration chromatography. Purified His-tagged proteins had molecular masses of 31 kDa and 120 kDa (a tetramer of 29-kDa subunits). The His-ta...
متن کاملFed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain's wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive bios...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 60 1 شماره
صفحات -
تاریخ انتشار 1993